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0. Introduction 1. Entire functions 2. Unit circle 3. Infinite products 4. Three variables 5. Positive characteristic

Transcendental number theory

In transcendental number theory, we are interested
in the transcendental numbers given by the values
of analytic functions at algebraic numbers. In other
words, its research objects are transcendental
numbers represented as explicit power series of
algebraic numbers.

Algebraic numbers
analytic function−−−−−−−−−−−−→Transcendental numbers

One of the main purpose in transcendental number
theory is to obtain a necessary and sufficient
condition for the values of a given analytic function
at algebraic numbers to be algebraically
independent.
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How about well-known functions

The remarkable case is that the values of a given
analytic function at any distinct algebraic numbers
are algebraically independent.

Well-known functions do not have this property.

For example, the famous Lindemann-Weierstrass
theorem asserts that the values eα1, . . . , eαs of
exponential function at algebraic numbers
α1, . . . , αs are algebraically dependent if and only if
α1, . . . , αs are linearly dependent over Q.
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Moreover, the Gamma function Γ(z) does not have
this property, since Γ(α+ 1) = αΓ(α) for any
α ∈ Q \ {0,−1,−2,−3, . . .}.

Furthermore, the Riemann zeta function

ζ(s) =
∞∑
n=1

1

ns
does not have this property, since

ζ(2k) ∈ Q×π2k for any k ∈ Z>0 and so
ζ(2k)ℓζ(2ℓ)−k ∈ Q× for any distinct k, ℓ ∈ Z>0.
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Perfect algebraic independence property

In this talk,
an analytic function f(z) is said to have the perfect
algebraic independence property
if the values of f(z) at any nonzero algebraic
numbers within the natural boundary of f(z) are
algebraically independent, namely
the infinite set{

f(α)
∣∣∣ α ∈ Q× ∩Df

}
is algebraically independent, where Df denotes the
domain of existence of the analytic function f(z).
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Differential perfect algebraic independence property

In this talk,
an analytic function g(z) is said to have the
differential perfect algebraic independence property
if the values of g(z) as well as the derivatives of
g(z) of any order at any nonzero algebraic numbers
within the natural boundary of g(z) are algebraically
independent, namely
the infinite set{

g(l)(α)
∣∣∣ l ∈ Z≥0, α ∈ Q× ∩Dg

}
is algebraically independent, where Dg denotes the
domain of existence of the analytic function g(z).
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Ingredients of this talk

The speaker will introduce 5 types of functions having the
(differential) perfect algebraic independence property:

...1 Complex entire functions having the differential perfect
algebraic independence property,

...2 Complex functions with natural boundary |z| = 1 having
the (differential) perfect algebraic independence property,

...3 Complex entire functions represented as infinite products
and having the differential perfect algebraic independence
property without their zeroes,

...4 Complex functions of three variables having the perfect
algebraic independence property, and

...5 Functions defined over function fields of positive
characteristic, and having the differential perfect algebraic
independence property.
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Complex entire functions having the differential

perfect algebraic independence property
The following complex entire function g(z) has the differential
perfect algebraic independence property, namely the infinite

set {g(l)(α) | l ∈ Z≥0, α ∈ Q×} is algebraically independent:

Fix β ∈ Q with 0 < |β| < 1 and d ∈ Z with d ≥ 2.

Nishioka (1986): g(z) =
∞∑
k=0

βk!zk.

Nishioka (1996): g(z) =
∞∑
k=0

βdkzk.

T (1996): g(z) =
∞∑
k=0

βRkzk, where {Rk}k≥0 belongs to a

certain class of linear recurrences, which will be explained later

and includes the sequence {Fk}k≥0 of Fibonacci numbers.
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Complex functions with natural boundary |z| = 1

having the perfect algebraic independence property

The following complex function f(z) has the natural
boundary |z| = 1 and the perfect algebraic
independence property, namely the infinite set{
f(α)

∣∣∣ α ∈ Q× ∩D
}
=
{
f(α)

∣∣ α ∈ Q, 0 < |α| < 1
}

is algebraically independent, where

D = {z ∈ C : |z| < 1}.
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Masser (1999): f(z) =
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Complex functions with natural boundary |z| = 1

having the differential perfect algebraic

independence property

The following complex function g(z) has the natural
boundary |z| = 1 and the differential perfect
algebraic independence property, namely the infinite
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Complex functions with natural boundary |z| = 1 having the (differential)

perfect algebraic independence property

All the (differential) perfect algebraic independence results
within the unit circle are proved by using Vandermonde
determinant whose entries are distinct roots of unity.

Presuming from f(z) =
∑∞

k=0 z
dk+k and g(z) =

∑∞
k=0 z

k!+k,
we raise the following
.
Problem
..

.

. ..

.

.

Let f(z) =
∑∞

k=0 z
ek ∈ {0, 1}[[z]]. Does f(z) have the

(differential) perfect algebraic independence property within
the unit circle if the following 2 conditions are both satisfied?

The exponents satisfy lim inf
k→∞

ek+1/ek > 1.

For any N ∈ Z>0 and for any a ∈ {0, 1, . . . , N − 1},
there are infinitely many k such that ek ≡ a (mod N).
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Complex entire functions represented as infinite

products and having the differential perfect

algebraic independence property without their

zeroes
.

.

. ..

.

.

Let

gd(z) =
∞∏
k=0

(
1− z

3d
k − 2d

k

)
(d = 2, 3, 4, . . .).

Then the infinite set{
g
(l)
d (α)

∣∣∣ d ≥ 2, l ∈ Z≥0, α ∈ Q×\{3dk − 2d
k}k≥0

}
is algebraically independent.
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Complex entire functions represented as infinite products and having the

differential perfect algebraic independence property without their zeroes

.
A special case of Theorem of Kurosawa-Tachiya-T (2014)
..

.

. ..

.

.

Let

gd(z) =
∞∏
k=0

(
1− z

c1ρd
k

1 + c2ρd
k

2

)
(d = 2, 3, 4, . . .),

where c1, c2, ρ1, ρ2 ∈ Q×
and ρ1, ρ2 are multiplicatively

independent and satisfy ρ1 > max{1, ρ2}. Then
the infinite set{

g
(l)
d (α)

∣∣∣ d ≥ 2, l ∈ Z≥0, α ∈ Q×\{c1ρd
k

1 + c2ρ
dk

2 }k≥0

}
is algebraically independent.
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Complex functions of three variables having the

(quasi) perfect algebraic independence property
.

.

. ..

.

.

Let {Gk}k≥0 be the generalized Fibonacci numbers defined by

G0 = 0, G1 = 1, Gk+2 = bGk+1 +Gk (k ≥ 0),

where b is a positive integer. Then the infinite set{
∞∑
k=1

xkqG1+G2+···+Gk

(1− aqG1)(1− aqG2) · · · (1− aqGk)

∣∣∣∣∣ x, a, q ∈ Q \ {0},
|a| ≤ 1, |q| < 1

}

is algebraically independent.

This is an example of the following result:
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.

.

. ..

.

.

Let {Gk}k≥0 be the generalized Fibonacci numbers defined by

G0 = 0, G1 = 1, Gk+2 = bGk+1 +Gk (k ≥ 0),

where b is a positive integer. Then the infinite set{
∞∑
k=1

xkqG1+G2+···+Gk

(1− aqG1)(1− aqG2) · · · (1− aqGk)

∣∣∣∣∣ x, a, q ∈ Q \ {0},
|a| ≤ 1, |q| < 1

}

is algebraically independent.

This is an example of the following result:
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Complex functions of three variables having the

(quasi) perfect algebraic independence property

Let {Rk}k≥1 be a linear recurrence of positive
integers satisfying

Rk+n = c1Rk+n−1 + · · ·+ cnRk (k ≥ 1),

where n ≥ 2 and c1, . . . , cn ∈ Z≥0 with cn ̸= 0.

Define

Θ(x, a, q) =
∞∑
k=1

xkqR1+R2+···+Rk

(1− aqR1)(1− aqR2) · · · (1− aqRk)

=
∞∑
k=1

k∏
l=1

xqRl

1− aqRl
.
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Complex functions of three variables having the

(quasi) perfect algebraic independence property

In what follows, let

U =
{
(x, a, q)

∣∣ x, a, q ∈ Q \ {0}, |a| ≤ 1, |q| < 1
}
.

Then Θ(x, a, q) =
∞∑
k=1

k∏
l=1

xqRl

1− aqRl
converges at

any point in U . Let (x1, a1, q1), (x2, a2, q2) ∈ U . We
write (x1, a1, q1) ∼ (x2, a2, q2) if x1/a1 = x2/a2 and
if a1q

Rk
1 = a2q

Rk
2 for all sufficiently large k. Then ∼

is an equivalence relation.
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Complex functions of three variables having the

(quasi) perfect algebraic independence property
.
Theorem (T, 2009)
..

.

. ..

.

.

Let {Rk}k≥1 be a linear recurrence of positive integers defined
above. Suppose {Rk}k≥1 is not a geometric progression. Let
Φ(X) = Xn − c1X

n−1 − · · · − cn. Assume that Φ(±1) ̸= 0
and the ratio of any pair of distinct roots of Φ(X) is not a
root of unity. Then the values

Θ(x, a, q) =
∞∑
k=1

k∏
l=1

xqRl

1− aqRl
((x, a, q) ∈ U)

are algebraically dependent if and only if there exist distinct
(x1, a1, q1), (x2, a2, q2) ∈ U such that
(x1, a1, q1) ∼ (x2, a2, q2).
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Complex functions of three variables having the

(quasi) perfect algebraic independence property
Recall that (x1, a1, q1) ∼ (x2, a2, q2) if x1/a1 = x2/a2 and if
a1q

Rk
1 = a2q

Rk
2 for all sufficiently large k. We have

.
Corollary (T, 2009)
..

.

. ..

.

.

Suppose that {Rk}k≥1 satisfies
Rk+n = c1Rk+n−1 + · · ·+ cn−1Rk+1 +Rk (k ≥ 1). Let
N∗ = g.c.d.(R2 −R1, R3 −R2, . . . , Rn+1 −Rn). Let ζ be a
primitive N∗-th root of unity and G = ⟨(ζR1 , ζR1 , ζ−1)⟩ a
cyclic group generated by (ζR1 , ζR1 , ζ−1) with componentwise

multiplication. Then the values Θ(x, a, q) =
∞∑
k=1

k∏
l=1

xqRl

1− aqRl

((x, a, q) ∈ U) are algebraically dependent if and only if there
exist distinct (x1, a1, q1), (x2, a2, q2) ∈ U such that
(x1/x2, a1/a2, q1/q2) ∈ G.
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Complex functions of three variables having the

(quasi) perfect algebraic independence property
.
Corollary (T, 2009)
..

.

. ..

.

.

Suppose in addition {Rk}k≥1 satisfies
Rk+n = c1Rk+n−1 + · · ·+ cn−1Rk+1 +Rk (k ≥ 1). Let
N∗ = g.c.d.(R2 −R1, R3 −R2, . . . , Rn+1 −Rn). Let ζ be a
primitive N∗-th root of unity and G = ⟨(ζR1 , ζR1 , ζ−1)⟩ a
cyclic group generated by (ζR1 , ζR1 , ζ−1) with componentwise

multiplication. Then the values Θ(x, a, q) =
∞∑
k=1

k∏
l=1

xqRl

1− aqRl

((x, a, q) ∈ U) are algebraically dependent if and only if there
exist distinct (x1, a1, q1), (x2, a2, q2) ∈ U such that
(x1/x2, a1/a2, q1/q2) ∈ G.

By this corollary we have the example stated above.
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Complex functions of three variables having the (quasi) perfect algebraic

independence property

By this corollary we have the example stated above,

since
N∗ = g.c.d.(G2−G1, G3−G2) = g.c.d.(b−1, b2−b+1) = 1.
.

.

. ..

.

.

Let {Gk}k≥0 be the generalized Fibonacci numbers defined by

G0 = 0, G1 = 1, Gk+2 = bGk+1 +Gk (k ≥ 0),

where b is a positive integer. Then the infinite set{
∞∑
k=1

xkqG1+G2+···+Gk

(1− aqG1)(1− aqG2) · · · (1− aqGk)

∣∣∣∣∣ x, a, q ∈ Q \ {0},
|a| ≤ 1, |q| < 1

}

is algebraically independent.
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Complex functions of three variables having the

(quasi) perfect algebraic independence property
.
Theorem (T, 2009)
..
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. ..

.

.

Let {Rk}k≥1 be a linear recurrence of positive integers defined
above. Suppose {Rk}k≥1 is not a geometric progression. Let
Φ(X) = Xn − c1X

n−1 − · · · − cn. Assume that Φ(±1) ̸= 0
and the ratio of any pair of distinct roots of Φ(X) is not a
root of unity. Then the values

Θ(x, a, q) =
∞∑
k=1

k∏
l=1

xqRl

1− aqRl
((x, a, q) ∈ U)

are algebraically dependent if and only if there exist distinct
(x1, a1, q1), (x2, a2, q2) ∈ U such that
(x1, a1, q1) ∼ (x2, a2, q2).
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Function field in positive characteristic

Let p be a prime and Fq the finite field of q
elements with q = pe.

Correspondence between the notions in function
field over Fq and those of Q is as follows:
A := Fq[θ]←→ Z, K := Fq(θ)←→ Q,
monic irreducible polynomial ∈ A←→ prime ∈ Z.
For any maximal ideal P ⊂ A, which is generated
by a monic irreducible polynomial of A, we can
construct the “P -adic” completion KP of K in a
similar way to construct the p-adic number field Qp.
For example, K(θ) = Fq((θ)).
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Function field in positive characteristic

On the other hand, for a = b/c ∈ K× with
b, c ∈ A\{0}, define |a|∞ := qdegθ(a), where
degθ(a) := degθ(b)− degθ(c).

Let K∞ = Fq((1/θ)), which is the completion of K
with respect to | · |∞. Let Kalg.

∞ be the algebraic
closure of K∞ and C∞ the completion of Kalg.

∞ ,
which is algebraically closed.
We treat not only Cv with v =∞ but also with
v = P , the maximal ideal of A generated by a
monic irreducible polynomial in A. For example,
C(θ) is the completion of Kalg.

(θ) with K(θ) = Fq((θ)).

57 / 68



0. Introduction 1. Entire functions 2. Unit circle 3. Infinite products 4. Three variables 5. Positive characteristic

Function field in positive characteristic

On the other hand, for a = b/c ∈ K× with
b, c ∈ A\{0}, define |a|∞ := qdegθ(a), where
degθ(a) := degθ(b)− degθ(c).

Let K∞ = Fq((1/θ)), which is the completion of K
with respect to | · |∞. Let Kalg.

∞ be the algebraic
closure of K∞ and C∞ the completion of Kalg.

∞ ,
which is algebraically closed.
We treat not only Cv with v =∞ but also with
v = P , the maximal ideal of A generated by a
monic irreducible polynomial in A. For example,
C(θ) is the completion of Kalg.

(θ) with K(θ) = Fq((θ)).
58 / 68



0. Introduction 1. Entire functions 2. Unit circle 3. Infinite products 4. Three variables 5. Positive characteristic

The result

We give a positive characteristic analogue of the
following result in all the complete, algebraically
closed field Cv for any nontrivial absolute value | · |v
on K.
.
Theorem (Nishioka, 1996)
..

.

. ..

.

.

For an integer d ≥ 2 and for β ∈ Q with 0 < |β| < 1, define

g(z) :=
∞∑
k=0

βdkzk. Then, the infinite set

{
g(j)(α)

∣∣∣ j ∈ Z≥0, α ∈ Q×
}
⊂ C

is algebraically independent over Q.
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Complex entire functions having the differential

perfect algebraic independence property
The following complex entire function g(z) has the differential
perfect algebraic independence property, namely the infinite

set {g(l)(α) | l ∈ Z≥0, α ∈ Q×} is algebraically independent:

Fix β ∈ Q with 0 < |β| < 1 and d ∈ Z with d ≥ 2.

Nishioka (1986): g(z) =
∞∑
k=0

βk!zk.

Nishioka (1996): g(z) =
∞∑
k=0

βdkzk.

T (1996): g(z) =
∞∑
k=0

βRkzk, where {Rk}k≥0 belongs to a

certain class of linear recurrences, which includes the sequence

{Fk}k≥0 of Fibonacci numbers. 60 / 68
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Hasse-Teichmüller derivatives

Since the derivative g(p)(x) of order p vanishes over the field
of characteristic p > 0, we consider Hasse-Teichmüller
derivatives defined as follows instead of the usual derivatives:

For any Laurent series
∞∑

k=m

ckx
k ∈ R((x)) with coefficients in

any ring R and for any nonnegative integer j we define the
Hasse-Teichmüller derivative H(j) of order j by

H(j)

(
∞∑

k=m

ckx
k

)
=

∞∑
k=m

ck

(
k

j

)
xk−j.

The Hasse-Teichmüller derivatives satisfy the product rule, the

quotient rule, and the chain rule.
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Functions defined over function fields of positive

characteristic, and having the differential perfect

algebraic independence property
.
Theorem (Goto-T, submitted)
..

.. ..

.

.

For an integer d ≥ 2 not divisible by the
characteristic p and for β ∈ Kalg. with 0 < |β|v < 1,

define g(z) :=
∞∑
k=0

βdkzk. Then, the infinite set

{
H(j)g(α)

∣∣∣ j ∈ Z≥0, α ∈
(
Kalg.

)×} ⊂ Cv

is algebraically independent over K.
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The result

For g(z) :=
∞∑
k=0

βpkzk we have

αpg(α)p =
∞∑
k=0

βpk+1

αp(k+1) = g(αp)− β.
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The result

Not only in Cv with v =∞ but also in Cv with
v = P , the maximal ideal of A generated by a
monic irreducible polynomial in A, we gave a
positive characteristic analogue of the following
.
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. ..
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For an integer d ≥ 2 not divisible by the characteristic p and

for β ∈ Kalg. with 0 < |β|v < 1, define g(z) :=

∞∑
k=0

βdkzk.

Then, the infinite set

{H(j)g(α) | j ∈ Z≥0, α ∈
(
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Thank you very much
for your attention!
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